Theory

Calculating for any positive integer's n and $\mathrm{x}\binom{n}{x}=\frac{n!}{x!(n-x)!} \quad$ the probability for any number in any number of iterations is $\frac{\binom{n}{x}}{\sum_{i=0}^{n}\binom{n}{x}}$ as more and more iterations are computed; the graph of the probability of a given number becomes smoother and approaches a normal distribution as a limit. The normal distribution gives the probability as: $\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)} \quad$ where $\mu={ }^{\frac{n}{2}}$ and σ is the standard deviation. Certainly, any set of random numbers may include consecutive numbers. So the probability of consecutive numbers is $\frac{(\dot{d}-p+1) 10^{(d-p)}}{10^{\dot{d}}}$ where the number of possible numbers of d digits which contain one or more sequences of p. When measuring the significance to experimentally discrete results one could use the chi-square $x^{2}=\sum_{1 \leq s \leq k} \frac{\left(Y_{s}-n p_{s}\right)^{2}}{n p_{s}}$ an experiment with d degrees of freedom (where $d=k-l$, one less the number of possible outcomes)
is consistent with the null hypothesis and can be calculated as:

$$
Q_{x^{2}, d}=\left[2^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)\right]^{-1} \int_{2^{2}}^{\infty}(t)\left(\frac{d}{2}-1\right) \mathrm{e}^{-t} \mathrm{~d} t
$$

Where Γ is the generalization of the factorial function to real and complex arguments.

