
As with all programs accessing the Windows API we must trap errors and close all windows

associated with the program so that a cleanup operation can be implemented. One of the first

decisions that has to be made is what audio format should be used. For example, the sampling

rate and number of channels must be decided. For a higher ideal frequency, we must choose a

higher sampling rate. Unfortunately, there is always a trade-off as we increase the sampling rate

to achieve higher audio frequency more coding becomes necessary. “Normally you should

choose the lowest sampling rate suitable for your application, remembering that it needs to be at

least double the highest audio frequency in which you are interested” (according to the Nyquist

criterion).

First code must be written to set up our audio format while including wave input device as

follows.

 340 DIM Format{wFormatTag{l&,h&}, nChannels{l&,h&}, nSamplesPerSec%, \ 350 \

 nAvgBytesPerSec%, nBlockAlign{l&,h&}, wBitsPerSample{l&,h&}, \ 360 \

 cbSize{l&,h&}} 370 380 Format.wFormatTag.l& = 1 : REM WAVE_FORMAT_PCM

 390 Format.nChannels.l& = 1 : REM Monaural 400 Format.nSamplesPerSec% = 44100 410

Format.wBitsPerSample.l& = 16 420 Format.nBlockAlign.l& = Format.nChannels.l& *

Format.wBitsPerSample.l& / 8 430 Format.nAvgBytesPerSec% = Format.nSamplesPerSec% *

Format.nBlockAlign.l& 440 450 _WAVE_MAPPER = -1 460 SYS "waveInOpen",

^WaveIn%, _WAVE_MAPPER, Format{}, 0, 0, 0 TO ret% 470 IF ret% ERROR 100,

"waveInOpen failed: "+STR$~ret%

For this project, I chose a sampling rate of 44100 Hz. This range is more adequate for the

project. 44100 Hz was chosen because most audio input may be as low as 11025 HZ even when

stating a rating of 44100 Hz. The next logical step in the creation of the code is to create and

initialize a few buffers. In this project, I created three and all are reused cyclically. The first

buffer is set up for inputting the sampled sound, the second buffer is actually being processed by

the program, while the third buffer was used as a spare. In order to avoid loss of data, the

program has to be set up to process the input of data quickly. To minimize latency, it is best to

increase the amount of buffers This works best rather than making larger buffers while working

out the fluctuations in this dicotomy. Here is the code used for buffering note there are three

buffers with 1024 samples at 44100 Hz. Thus, we can expect a latency of at least 24 ms.

 530 nBuffers% = 3 540 SamplesPerBuffer% = 1024 550 BytesPerBuffer% =

SamplesPerBuffer% * Format.nBlockAlign.l& 560 570 DIM _WAVEHDR{lpData%,

dwBufferLength%, dwBytesRecorded%, dwUser%, \ 580 \ dwFlags%, dwLoops%,

lpNext%, Reserved%} 590 600 DIM Headers{(nBuffers%-1)} = _WAVEHDR{} 610 620

FOR buff% = 0 TO nBuffers%-1 630 DIM buffer% BytesPerBuffer% - 1 640 650

 Headers{(buff%)}.lpData% = buffer% 660 Headers{(buff%)}.dwBufferLength% =

BytesPerBuffer% 670 680 SYS "waveInPrepareHeader", WaveIn%, Headers{(buff%)},

DIM(_WAVEHDR{}) TO ret% 690 IF ret% ERROR 100, "waveInPrepareHeader failed:

"+STR$~ret% 700 710 SYS "waveInAddBuffer", WaveIn%, Headers{(buff%)},

DIM(_WAVEHDR{}) TO ret% 720 IF ret% ERROR 100, "waveInAddBuffer failed:

"+STR$~ret% 730 NEXT

Please note that in this code I have allocated the buffers using BASIC’s heap, However I could

have used the Windows API to allocate the memory. After preparing a way to input real-time

audio capture the audio should be set up.

 820 SYS "waveInStart", WaveIn% TO ret% 830 IF ret% ERROR 100, "waveInStart failed:

"+STR$~ret%

In order to make sure the program can keep up with the received audio implementation, the next

code decides if the buffers need to process.

 870 _WHDR_DONE = 1 880 REPEAT 890 FOR buff% = 0 TO nBuffers%-1 900 IF

Headers{(buff%)}.dwFlags% AND _WHDR_DONE THEN 910

 PROCprocessbuffer(Headers{(buff%)}.lpData%, SamplesPerBuffer%) 920

 Headers{(buff%)}.dwFlags% AND= NOT _WHDR_DONE 930 SYS

"waveInAddBuffer", WaveIn%, Headers{(buff%)}, DIM(_WAVEHDR{}) 940 ENDIF 950

 NEXT 960 SYS "Sleep", 1 970 UNTIL FALSE

Processing the audio data is the most important aspect of the project. However, I prefer to keep

this process proprietary. Each audio sample consists of a signed 16-bit value in the range -32768

to +32767. Lastly, a standard cleanup routine should be implemented. Note the missing line

numbers in the code seqments indicate rededacted proprietary code.

