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Abstract
This technical report treats some technical considerations related to the probability density function of a function of a random vector.

I. INTRODUCTION

Let be a continuous random vector with known pdf . In many problems it is necessary to find the pdf
of a new random vector defined as a function of , where .

Many textbooks on probability and random variables state the following equality:

(1)

where is the Jacobian of .
There is considerable variation in how precisely the textbook authors state the conditions for the above equality.

Most books do state the condition that be one-to-one (and hence invertible). However, the stated conditions on
differentiability vary widely.
Many engineering books make no mention of the need for to be differentiable, e.g. [1–7]. Many books assume

that is globally differentiable e.g. [8–13], but this condition is too restrictive in some applications. Some books
[14–16] assume that is one-to-one and differentiable on some open set , and that the pdf of
vanishes (is zero) outside of . This is reasonably general, but still inapplicable to problems where, for example,
has a Gaussian pdf and is a proper subset of .
A more general requirement is to assume that , for which the condition that vanishes outside

is a special case. Hoel, Port, and Stone [17] provide such a theorem without proof. Bickel and Doksum [18] provide a
proof of the transformation formula under the condition , but the proof is not entirely rigorous since the
integrals given can cover points outside where the Jacobian need not exist. This technical report provides a rigorous
proof of (1), properly handling the technical details of the set .
This work was motivated by [19], in which a transformation function arises that is differentiable except on a set of

hyperplanes of Lebesgue measure zero.

II. THEORY

The following is simply Theorem 17.2 of [14], included for convenience.
Theorem 1: Let be a one-to-one mapping of an open set onto an open set . Suppose that

(on ) is continuous and that has continuous partial derivatives with Jacobian . Then for
, for any nonnegative function

(2)
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The following Theorem is a generalization of (20.20) in [14]. Standard treatments e.g. [13, p. 143] assume that
the transformation function is globally differentiable. Our generalization allows for a (measure zero) set where the
Jacobian is undefined.
Theorem 2: Let be one-to-one and assume that is continuous. Assume that on an open set

is continuously differentiable with Jacobian . Define by

(3)

where is the set complement (in ) of .
Define . Suppose random vector has pdf (with respect to Lebesgue measure) with nonzero mass

in , i.e. Then the pdf of is given by

(4)

Proof:
For (measurable)

Thus so

by Theorem 1, which applies since . (The set is open since by assumption is open and is continuous.)
Thus by (3):

since is the union of the disjoint sets and . The second integral above is zero since is zero for
by (3). Thus

for , proving that (4) is a pdf of .
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Transformation of Random Vectors: Continued

White Random Vectors

A random vector X in an underlying sample space S ⊆ Rn is said to be white if the components of
the random vector are statistically independent of each other, i.e., the joint nth–order PDF of the
components is separable, i.e,

fX(x) =
n∏

i=1

fXi(xi).

As a consequence, the components are also pairwise independent of each other, i.e.,

fXi,Xj (xi, xj) = fXi(xi)fXj (xj), i 6= j.

Since the components are pairwise independent they are also pairwise uncorrelated. This implies
that the covariance matrix associated with a white random vector is diagonal, i.e.,

Cx = Λ ≡ diag(λ1, λ2, . . . λn).

If the uncorrelated random variables are further identically distributed, i.e., possess identical sta-
tistical characteristics then the random vector is said to be a i.i.d random vector. In this case the
covariance matrix becomes an identity matrix:

Cx = σ2I,

where σ is the common standard deviation of the components. A random vector is said to be weakly
white if the components are just statistically uncorrelated. Henceforth when we refer to a white
random vector it will mean white in the weak sense.

In certain digital communication applications such as Vitterbi decoding, used to remove inter
symbol interference (ISI) introduced by a channel with finite memory, a white channel noise model
is required. In some cases this may not be true and it will be necessary to whiten the noise before
the application of the Vitterbi algorithm.

Whitening of a Random Vector:

If we transform a random vector X using a linear transformation A then the mean vector and
covariance matrix of the transformed random vector Y are given by:

my = Amx, Cy = ACxAT

In linear algebra terminology we seek a transformation A that transforms the random vector X
into another random vector Y = AX that has a diagonal covariance matrix Cy, i.e., we require:

Cy = ACxAT = D,

where D is some diagonal, positive semi–definite matrix. The solution to this whitening problem
is to choose the linear transformation A to be equal to VT , where V is the unitary matrix of
eigenvectors of the covariance matrix Cx, i.e.,

Y = VTX ⇐⇒ Cy = VTCxV = Λ.

This process of whitening the random vector X using the eigenvectors of its covariance matrix is
also called as the Karhunen Loeve Transform (KLT).



IID Whitening:

If we require that the transformed vector be not only white but also i.i.d then we require:

Cy = ACxAT = σ2I.

The solution to this i.i.d whitening problem is given by:

A = σΛ− 1
2 VT ,

where Λ
1
2 refers to the self–adjoint matrix square–root of Λ, Λ is the diagonal matrix of eigenvalues

of Cx and V is the unitary matrix of eigenvectors of Cx. The fact that the covariance of the
transformed vector Y is identity can be verified via:

Cy = ACxAT = σ2Λ− 1
2 VTCxVΛ− 1

2 = σ2Λ− 1
2 ΛΛ− 1

2 = σ2I.

Geometrical Interpretation of Whitening

A unitary transformation A is a rotation in Rn if the coloums are orthonormal, i.e .,

ATA = I ⇐⇒ A−1 = AT .

For a deterministic vector, the length of a vector remains invariant under a unitary operation, i.e.,

||y|| = ||Ax|| = ||x||.

In the space of random vectors X ∈ S ⊆ Rn this implies that the average power is preserved, i.e.,

< Y,Y >=< AX,AX >= E{XTATAX} =< X,X >= Pave.

The KLT in the first case, i.e., the weakly white case therefore corresponds to a rotation of the
random vector X. In the second case, i.e., the i.i.d white case the KLT corresponds to first a
rotation by VT followed by inverse scaling of the axes by σΛ− 1

2 . In a sense this is analogous to the
process of reducing a general quadratic form to the standard quadratic form that we encounter in
coordinate geometry.


